Radiocarbon dating of Chinese Ancient Tea Trees

Author:

Chen Jia,Shen HongtaoORCID,Sasa Kimikazu,Lan Haihui,Matsunaka TetsuyaORCID,Matsumura Masumi,Takahashi Tsutomu,Hosoya Seiji,He Ming,He Yun,Li Zhaomei,Zhao Zhenchi,Liu Mingji,Wei Siyu,Qi Mingli,Zhao Qingzhang,Qin Xiuju,Chen Xinqiang,Jiang Shan

Abstract

ABSTRACTThe jungles of Linyun and Longlin Autonomous Prefecture, located in the heart of the southwestern Guangxi Zhuang Autonomous Region of China, are home to the oldest tea trees (Camellia sinensis) in the world. In the absence of regular annual rings, radiocarbon (14C) dating is one of the most powerful tools that can assist in the determination of the ages and growth rates of these plants. In this work, cores were extracted from large ancient tea trees in a central Longlin rain forest; extraction of carbon was performed with an automated sample preparation system. The 14C levels in the tree cores were measured using accelerator mass spectrometry (AMS) at the University of Tsukuba. These measurements indicated that contrary to conventional views, the ages of trees in these forests range up to ~700 years, and the growth rate of this species is notably slow, exhibiting a long-term radial growth rate of 0.039±0.006 cm/yr. It was demonstrated that 14C analyses provide accurate determination of ages and growth rates for subtropical wild tea trees.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3