Abstract
Abstract
Let
$\varphi _1,\ldots ,\varphi _r\in {\mathbb Z}[z_1,\ldots z_k]$
be integral linear combinations of elementary symmetric polynomials with
$\text {deg}(\varphi _j)=k_j\ (1\le j\le r)$
, where
$1\le k_1<k_2<\cdots <k_r=k$
. Subject to the condition
$k_1+\cdots +k_r\ge \tfrac {1}{2}k(k-~1)+2$
, we show that there is a paucity of nondiagonal solutions to the Diophantine system
$\varphi _j({\mathbf x})=\varphi _j({\mathbf y})\ (1\le j\le r)$
.
Publisher
Cambridge University Press (CUP)