Abstract
This paper surveys the known results on automatic continuity of positive functionals on topological *-algebras and then shows how two theorems on Banach *-algebras extend to complete metrizable topological *-algebras. The two theorems concerned are Loy's theorem on separable Banach *-algebras A with centre Z such that AZ is of countable codimension and Varopoulos' result on Banach *-algebras with bounded approximate identity. Both theorems have the conclusion that all positive functionals on such algebras are continuous. The extension of the second theorem requires the algebra to be locally convex and the approximate identity to be ‘uniformly bounded’. Neither extension requires the algebra to be LMC. This means that the proof of the first theorem is quite different from the corresponding Banach algebra result (which used spectral theory). The proof of the second is closer to the previously known LMC version, but actually neater by being more general. It is also shown that the well-known estimate of |f(a*ba)| for a positive functional f on a Banach *-algebra may be obtained without the usual use of spectral theory. The paper concludes with a list of open questions.
Publisher
Cambridge University Press (CUP)
Reference22 articles.
1. Metric generalizations of Banach algebras;Żelazko;Rozprawy Mat.,1965
2. Sur les formes positives d'une algèbre de Banach;Varopoulos;C.R. Acad. Sci.,1964
3. Automatic Continuity of Linear Operators
4. Continuity of positive and multiplicative functionals
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献