Author:
Hirano Yasuyuki,Sumiyama Takao
Abstract
Let R be a directly indecomposable finite ring. Let p be a prime, let m be a positive integer and suppose the radical of R has pm elements. Then we show that . As a consequence, we have that, for a given finite nilpotent ring N, there are up to isomorphism only finitely many finite rings not having simple ring direct summands, with radical isomorphic to N. Let R* denote the group of units of R. Then we prove that (1 − 1/p)m+1 ≤ |R*| / |R| ≤ 1 − 1/pm. As a corollary, we obtain that if R is a directly indecomposable non-simple finite 2′-ring then |R| < |R*| |Rad(R)|.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. INDECOMPOSABILITY GRAPHS OF RINGS;Bulletin of the Australian Mathematical Society;2008-02