Abstract
Abstract
We extend the notion of polynomial integration over an arbitrary circle C in the Euclidean geometry over general fields
$\mathbb {F}$
of characteristic zero as a normalised
$\mathbb {F}$
-linear functional on
$\mathbb {F}[\alpha _1, \alpha _2]$
that maps polynomials that evaluate to zero on C to zero and is
$\mathrm {SO}(2,\mathbb {F})$
-invariant. This allows us to not only build a purely algebraic integration theory in an elementary way, but also give the super Catalan numbers
$$ \begin{align*} S(m,n) = \frac{(2m)!(2n)!}{m!n!(m+n)!} \end{align*} $$
an algebraic interpretation in terms of values of this algebraic integral over some circle applied to the monomials
$\alpha _1^{2m}\alpha _2^{2n}$
.
Publisher
Cambridge University Press (CUP)
Reference12 articles.
1. A note on super Catalan numbers;Georgiadis;Interdiscip. Inform. Sci.,2012
2. A weighted interpretation for the super Catalan numbers;Allen;J. Integer Seq.,2014
3. A combinatorial interpretation of the numbers
$6(2n)!/ n!(n+2)!$;Gessel;J. Integer Seq.,2005
4. Catalan Numbers
5. Integration Over Spheres and the Divergence Theorem for Balls