Abstract
AbstractLet
$a,b$
and n be positive integers and let
$S=\{x_1, \ldots , x_n\}$
be a set of n distinct positive integers. For
${x\in S}$
, define
$G_{S}(x)=\{d\in S: d<x, \,d\mid x \ \mathrm {and} \ (d\mid y\mid x, y\in S)\Rightarrow y\in \{d,x\}\}$
. Denote by
$[S^a]$
the
$n\times n$
matrix having the ath power of the least common multiple of
$x_i$
and
$x_j$
as its
$(i,j)$
-entry. We show that the bth power matrix
$[S^b]$
is divisible by the ath power matrix
$[S^a]$
if
$a\mid b$
and S is gcd closed (that is,
$\gcd (x_i, x_j)\in S$
for all integers i and j with
$1\le i, j\le n$
) and
$\max _{x\in S} \{|G_S (x)|\}=1$
. This confirms a conjecture of Shaofang Hong [‘Divisibility properties of power GCD matrices and power LCM matrices’, Linear Algebra Appl.428 (2008), 1001–1008].
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献