Sharp constants in higher-order heat kernel bounds

Author:

Dungey Nick

Abstract

We consider a space X of polynomial type and a self-adjoint operator on L2(X) which is assumed to have a heat kernel satisfying second-order Gaussian bounds. We prove that any power of the operator has a heat kernel satisfying Gaussian bounds with a precise constant in the Gaussian. This constant was previously identified by Barbatis and Davies in the case of powers of the Laplace operator on RN. In this case we prove slightly sharper bounds and show that the above-mentioned constant is optimal.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference9 articles.

1. Semigroup Kernels, Poisson Bounds, and Holomorphic Functional Calculus

2. Commutators and generators II.

3. Sharp bounds on heat kernel of higher order uniformly elliptic operators;Barbatis;J. Operator Theory,1996

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. L estimates for fractional Schrödinger operators with Kato class potentials;Journal of Differential Equations;2018-11

2. Spectral Multipliers, Bochner–Riesz Means and Uniform Sobolev Inequalities for Elliptic Operators;International Mathematics Research Notices;2017-01-21

3. Smoothing and perturbation for some fourth order linear parabolic equations in RN;Journal of Mathematical Analysis and Applications;2014-04

4. Sharp spectral multipliers for operators satisfying generalized Gaussian estimates;Journal of Functional Analysis;2014-01

5. Higher order linear parabolic equations;Recent Trends in Nonlinear Partial Differential Equations I;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3