Heterochrony in brontothere horn evolution: allometric interpretations and the effect of life history scaling

Author:

Bales Gerald S.

Abstract

The Brontotheriidae (Perissodactyla, Mammalia) are often used as an illustration of vertebrate macroevolutionary trends because their morphological evolution includes significant size increases accompanied by the disproportionate lengthening of bony frontonasal horns. The positive phylogenetic allometry for horn length vs. skull length is among the strongest known of such relationships in vertebrate phylogeny. Hypotheses explaining the change from small, incipient horns in Eocene ancestors to longer horns in Oligocene descendants have included two heterochronic mechanisms, hypermorphosis (extrapolation) and predisplacement (earlier onset time of horn growth). These proposed peramorphic mechanisms derive from interpretation of adult intergeneric allometries in logarithmic data spaces. Analysis of the raw (unlogged) data shows that the simple allometric model previously used is not an appropriate model for this specific problem. The heterochronic interpretations derived from them are therefore unsupported (but not disproven) by the allometries. A more appropriate allometric model for the data (full model) does not support any heterochronic interpretation. Previously unaccounted for in the heterochronic hypotheses is a complication due to body-size scaling effects on life history stage lengths. Neontological scaling patterns suggest that brontothere size increases were probably accompanied by increasing life spans and longer developmental stages. This effect broadens the types of heterochronies that may be postulated. Semiquantitative analyses comparing brontotheres with similarly sized extant ungulates show the hypothesized effect of larger size on brontothere life history stages. A scaled descendant ontogeny introduces the problem of relative vs. absolute time frames within which to view ontogenetic onset times. Thus, predisplacements, postdisplacements, or nondisplacements may be viewed as relative or absolute with respect to ancestral ontogenies. This raises a fundamental question about how development scales, which in turn affects how heterochronies are interpreted. A scaling effect suggests that brontothere horns are more likely postdisplaced in the traditional absolute time sense. Paradoxically then, while the descendant adult horn is peramorphic, its onset time may have shifted in a paedomorphic direction. Data for two Oligocene juvenile brontotheres suggest that most horn growth occurred late in their longer (i.e., descendant) ontogenies (hypermorphosis), and that the horns probably grew at faster rates (acceleration) than in Eocene taxa.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference38 articles.

1. The relationship between the Gompertz constant and maximum potential lifespan; Its relevance to theories of aging

2. Patterns of heterochrony in the fossil record

3. The simple allometry equation reconsidered: assumptions, problems, and alternative solutions;Albrecht;American Zoologist,1988

4. The Ecological Implications of Body Size

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3