A functional analysis of flying and walking in pterosaurs

Author:

Padian Kevin

Abstract

An analysis of the structure and kinematics of the forelimbs and hindlimbs of pterosaurs, and functional analogy with recent and fossil vertebrates, supports a reappraisal of the locomotory abilities of pterosaurs. A hypothesis of structural, aerodynamic, and evolutionary differences distinguishing vertebrate gliders from fliers is proposed; pterosaurs fit all the criteria of fliers but none pertaining to gliders. The kinematics of the reconstructed pterosaur flight stroke reveal a down-and-forward component found also in birds and bats; structural features of the shoulder girdle and sternum unique to pterosaurs may be explained in light of this motion. The recovery stroke of flight was accomplished, in birdlike fashion, by a functional reversal of the action of theM. supracoracoideusby the pronounced enlargement of the acrocoracoid process, which acted as a pulley. The wing membrane was supported and controlled through a system of stiffened, intercalated fibers, which were oriented like the main structural elements in the wings of birds and bats.The hindlimbs of pterosaurs were independent of the wing membrane, and articulated like those of other advanced archosaurs and birds, not like those of bats. The gait was parasagittal and the stance digitigrade. Because of limitations on the motion of the forelimb at the shoulder, pterosaurs could not have walked quadrupedally. However, bipedal locomotion appears to have been normal and quite sufficient in all pterosaurs. There is nothing batlike about pterosaur anatomy; on the other hand, pterosaurs bear close structural resemblances to birds and dinosaurs, to which they are most closely related phylogenetically.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference68 articles.

1. On the osteology of Nyctosaurus (Nyctodactylus) with notes on American pterosaurs;Williston;Pubs. Field Mus. Nat. Hist. (Geol. Ser.),1903

2. Campylognathoides liasicus (Quenstedt), an Upper Liassic pterosaur from Holzmaden;Wellnhofer;The Pittsburgh specimen. Ann. Carnegie Mus.,1974

3. Phylogeny of Nearctic Sciuridae

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3