Abstract
Let n ≥ 3, Ω ⊂ Rn be a domain with 0 ∈ Ω, then, for all the Hardy–Sobolev inequality says that
and equality holds if and only if u = 0 and ((n − 2)/2)2 is the best constant which is never achieved. In view of this, there is scope for improving this inequality further. In this paper we have investigated this problem by using the fundamental solutions and have obtained the optimal estimates. Furthermore, we have shown that this technique is used to obtain the Hardy–Sobolev type inequalities on manifolds and also on the Heisenberg group.
Publisher
Cambridge University Press (CUP)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献