Author:
Elliott Charles M.,Schätzle Reiner
Abstract
In this paper, we prove that solutions of the anisotropic Allen–Cahn equation in doubleobstacle formwhere A is a strictly convex function, homogeneous of degree two, converge to an anisotropic mean-curvature flowwhen this equation admits a smooth solution in ℝn. Here VN and R respectively denote the normal velocity and the second fundamental form of the interface, and More precisely, we show that the Hausdorff-distance between the zero-level set of φ and the interface of the above anisotropic mean-curvature flow is of order O(ε2).
Publisher
Cambridge University Press (CUP)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献