Abstract
SynopsisQuasi-differential expressions with matrix-valued coefficients, which generalize those of Shin and Zettl, are considered with regard to equivalence, adjoints and symmetry. The characterization results imply that in the scalar case the class of quasi-differential expressions considered here coincides with that of Shin and is equivalent to that of Zettl. Furthermore polynomials in quasi-differential expressions are defined as expressions of the same kind and shown to coincide with the usual ones. Finally it is indicated that the known general results for the deficiency indices carry over to quasi-differential expressions.
Publisher
Cambridge University Press (CUP)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献