PDMP Monte Carlo methods for piecewise smooth densities

Author:

Chevallier AugustinORCID,Power SamORCID,Wang Andi Q.,Fearnhead PaulORCID

Abstract

Abstract There has been substantial interest in developing Markov chain Monte Carlo algorithms based on piecewise deterministic Markov processes. However, existing algorithms can only be used if the target distribution of interest is differentiable everywhere. The key to adapting these algorithms so that they can sample from densities with discontinuities is to define appropriate dynamics for the process when it hits a discontinuity. We present a simple condition for the transition of the process at a discontinuity which can be used to extend any existing sampler for smooth densities, and give specific choices for this transition which work with popular algorithms such as the bouncy particle sampler, the coordinate sampler, and the zigzag process. Our theoretical results extend and make rigorous arguments that have been presented previously, for instance constructing samplers for continuous densities restricted to a bounded domain, and we present a version of the zigzag process that can work in such a scenario. Our novel approach to deriving the invariant distribution of a piecewise deterministic Markov process with boundaries may be of independent interest.

Publisher

Cambridge University Press (CUP)

Reference34 articles.

1. [6] Bierkens, J. , Grazzi, S. , Kamatani, K. and Roberts, G. (2020). The boomerang sampler. In Proc. 37th International Conference on Machine Learning (Proceedings of Machine Learning Research 119), Machine Learning Research Press, pp. 908–918.

2. [19] Grazzi, S. (2023). Design and applications of Monte Carlo methods based on piecewise deterministic Markov processes. Doctoral Thesis, Delft University of Technology.

3. Zig-zag sampling for discrete structures and nonreversible phylogenetic MCMC;Koskela;J. Comput. Graph. Statist.,2022

4. Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods;Nishimura;Biometrika,2020

5. Markov Models and Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3