Adaptive stochastic trajectory modelling in the chaotic advection regime

Author:

Esler J. G.

Abstract

Motivated by the goal of improving and augmenting stochastic Lagrangian models of particle dispersion in turbulent flows, techniques from the theory of stochastic processes are applied to a model transport problem. The aim is to find an efficient and accurate method to calculate the total tracer transport between a source and a receptor when the flow between the two locations is weak, rendering direct stochastic Lagrangian simulation prohibitively expensive. Importance sampling methods that combine information from stochastic forward and back trajectory calculations are proposed. The unifying feature of the new methods is that they are developed using the observation that a perfect strategy should distribute trajectories in proportion to the product of the forward and adjoint solutions of the transport problem, a quantity here termed the ‘density of trajectories’ $D(\boldsymbol{x},t)$. Two such methods are applied to a ‘hard’ model problem, in which the prescribed kinematic flow is in the large-Péclet-number chaotic advection regime, and the transport problem requires simulation of a complex distribution of well-separated trajectories. The first, Milstein’s measure transformation method, involves adding an artificial velocity to the trajectory equation and simultaneously correcting for the weighting given to each particle under the new flow. It is found that, although a ‘perfect’ artificial velocity $\boldsymbol{v}^{\ast }$ exists, which is shown to distribute the trajectories according to $D$, small errors in numerical estimates of $\boldsymbol{v}^{\ast }$ cumulatively lead to difficulties with the method. A second method is Grassberger’s ‘go-with-the-winners’ branching process, where trajectories found unlikely to contribute to the net transport (losers) are periodically removed, while those expected to contribute significantly (winners) are split. The main challenge of implementation, which is finding an algorithm to select the winners and losers, is solved by a choice that explicitly forces the distribution towards a numerical estimate of $D$ generated from a previous back trajectory calculation. The result is a robust and easily implemented algorithm with typical variance up to three orders of magnitude lower than the direct approach.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Second order structure functions for higher powers of turbulent velocity;Journal of Physics: Condensed Matter;2019-08-30

2. Shear dispersion in the turbulent atmospheric boundary layer;Quarterly Journal of the Royal Meteorological Society;2017-04

3. The role of variability in transport for large-scale flow dynamics;Communications in Nonlinear Science and Numerical Simulation;2015-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3