Detached shear-layer instability and entrainment in the wake of a flat plate with turbulent separating boundary layers

Author:

Rai Man Mohan

Abstract

The near and very near wake of a flat plate with a circular trailing edge, with vigorous vortex shedding, is investigated with data from direct numerical simulations (DNS). Computations were performed for four different combinations of the Reynolds numbers based on plate thickness ($D$) and momentum thickness near the trailing edge (${\it\theta}$). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The objectives of the study are twofold, to investigate the entrainment process when the separating boundary layers are turbulent and to better understand the instability of the detached shear layers (DSLs). A visualization of the entrainment process, the effect of changing the ratio ${\it\theta}/D$ on entrainment and wake-velocity statistics, and a way of understanding entrainment in a phase-averaged sense via distributions of the turbulent transport rate are provided here. The discussion on shear-layer instability focuses on the role of log-layer eddies in the destabilization process, the effect of high-speed streaks in the turbulent boundary layer in the vicinity of the trailing edge on shear-layer vortex generation rates, and a relationship between the prevalence of shear-layer vortex generation and shedding phase that is a result of an interaction between the shedding process and the shear-layer instability mechanism. A power-law relationship between the ratio of shear-layer and shedding frequencies and the Reynolds numbers mentioned above is obtained. A discussion of the relative magnitudes of the exponents is provided. A second power-law relationship between shed-vortex strength and these two Reynolds numbers is also proposed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference20 articles.

1. The transition to turbulence in the wake of a circular cylinder

2. Flow phenomena in the very near wake of a flat plate with a circular trailing edge

3. On vortex formation from a cylinder. Part 1. The initial instability

4. Rai, M. M. 2012 Phase-averaged Reynolds-stress budget in the turbulent near wake of a flat plate. Paper No. 2012-0067, 50th AIAA Aerospace Sciences Meeting, Nashville, TN.

5. Kim, J.  & Choi, H. 2001. Instability of the shear layer separating from a circular cylinder. In Proceedings of the Third AFOSR International Conference on DNS/LES, Arlington, TX, pp. 727–734.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3