Entrainment and mixed layer dynamics of a surface-stress-driven stratified fluid

Author:

Manucharyan G. E.,Caulfield C. P.

Abstract

AbstractWe consider experimentally an initially quiescent and linearly stratified fluid with buoyancy frequency $N_{Q}$ in a cylinder subject to surface-stress forcing from a disc of radius $R$ spinning at a constant angular velocity ${\rm\Omega}$. We observe the growth of the disc-adjacent turbulent mixed layer bounded by a sharp primary interface with a constant characteristic thickness $l_{I}$. To a good approximation the depth of the forced mixed layer scales as $h_{F}/R\sim (N_{Q}/{\rm\Omega})^{-2/3}({\rm\Omega}t)^{2/9}$. Generalising the previous arguments and observations of Shravat et al. (J. Fluid Mech., vol. 691, 2012, pp. 498–517), we show that such a deepening rate is consistent with three central assumptions that allow us to develop a phenomenological energy balance model for the entrainment dynamics. First, the total kinetic energy of the deepening mixed layer $\mathscr{E}_{KF}\propto h_{F}u_{F}^{2}$, where $u_{F}$ is a characteristic velocity scale of the turbulent motions within the forced layer, is essentially independent of time and the buoyancy frequency $N_{Q}$. Second, the scaled entrainment parameter $E={\dot{h}}_{F}/u_{F}$ depends only on the local interfacial Richardson number $Ri_{I}=(N_{Q}^{2}h_{F}l_{I})/(2u_{F}^{2})$. Third, the potential energy increase (due to entrainment, mixing and homogenisation throughout the deepening mixed layer) is driven by the local energy input at the interface, and hence is proportional to the third power of the characteristic velocity $u_{F}$. We establish that internal consistency between these assumptions implies that the rate of increase of the potential energy (and hence the local mass flux across the primary interface) decreases with $Ri_{I}$. This observation suggests, as originally argued by Phillips (Deep-Sea Res., vol. 19, 1972, pp. 79–81), that the mixing in the vicinity of the primary interface leads to the spontaneous appearance of secondary partially mixed layers, and we observe experimentally such secondary layers below the primary interface.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3