Optimal morphokinematics for undulatory swimmers at intermediate Reynolds numbers

Author:

van Rees Wim M.,Gazzola Mattia,Koumoutsakos Petros

Abstract

Undulatory locomotion is an archetypal mode of propulsion for natural swimmers across scales. Undulatory swimmers convert transverse body oscillations into forward velocity by a complex interplay between their flexural movements, morphological features and the fluid environment. Natural evolution has produced a wide range of morphokinematic examples of undulatory swimmers that often serve as inspiration for engineering devices. It is, however, unknown to what extent natural swimmers are optimized for hydrodynamic performance. In this work, we reverse-engineer the morphology and gait for fast and efficient swimmers by coupling an evolution strategy to three-dimensional direct numerical simulations of flows at intermediate Reynolds numbers. The fastest swimmer is slender with a narrow tail fin and performs a sequence of C-starts to maximize its average velocity. The most efficient swimmer combines moderate transverse movements with a voluminous head, tapering into a streamlined profile via a pronounced inflection point. These optimal solutions outperform anguilliform swimming zebrafish in both efficiency and speed. We investigate the transition between morphokinematic solutions in the speed–energy space, laying the foundations for the design of high-performance artificial swimming devices.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3