Author:
van Rees Wim M.,Gazzola Mattia,Koumoutsakos Petros
Abstract
Undulatory locomotion is an archetypal mode of propulsion for natural swimmers across scales. Undulatory swimmers convert transverse body oscillations into forward velocity by a complex interplay between their flexural movements, morphological features and the fluid environment. Natural evolution has produced a wide range of morphokinematic examples of undulatory swimmers that often serve as inspiration for engineering devices. It is, however, unknown to what extent natural swimmers are optimized for hydrodynamic performance. In this work, we reverse-engineer the morphology and gait for fast and efficient swimmers by coupling an evolution strategy to three-dimensional direct numerical simulations of flows at intermediate Reynolds numbers. The fastest swimmer is slender with a narrow tail fin and performs a sequence of C-starts to maximize its average velocity. The most efficient swimmer combines moderate transverse movements with a voluminous head, tapering into a streamlined profile via a pronounced inflection point. These optimal solutions outperform anguilliform swimming zebrafish in both efficiency and speed. We investigate the transition between morphokinematic solutions in the speed–energy space, laying the foundations for the design of high-performance artificial swimming devices.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献