Detachment of droplets from cylinders in flow using an experimental analogue

Author:

Hotz C. J.,Mead-Hunter R.,Becker T.,King A. J. C.,Wurster S.,Kasper G.,Mullins B. J.

Abstract

This work experimentally examines the detachment of liquid droplets from both oleophilic and oleophobic fibres, using an atomic force microscope. The droplet detachment force was found to increase with increasing fibre diameter and forces were higher for philic fibres than phobic fibres. We also considered the detachment of droplets situated on the intersection of two fibres and arrays of fibres (such as found in fibrous mats or filters) and found that the required detachment forces were higher than for similarly sized droplets on a single fibre, though not as high as expected based on theory. A model was developed to predict the detachment force, from single fibres, which agreed well with experimental results. It was found that the entire dataset (single and multiple fibres) could be best described by power law relationships.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3