Optimal control of energy extraction in wind-farm boundary layers

Author:

Goit Jay P.,Meyers Johan

Abstract

In very large wind farms, the vertical interaction with the atmospheric boundary layer plays an important role, i.e. the total energy extraction is governed by the vertical transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate optimal control of wind-farm boundary layers, considering the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the flow field and the vertical energy transport. To this end, we use large-eddy simulations of a fully developed pressure-driven wind-farm boundary layer in a receding-horizon optimal control framework. For the optimization of the wind-turbine controls, a conjugate-gradient optimization method is used in combination with adjoint large-eddy simulations for the determination of the gradients of the cost functional. In a first control study, wind-farm energy extraction is optimized in an aligned wind farm. Results are accumulated over one hour of operation. We find that the energy extraction is increased by 16 % compared to the uncontrolled reference. This is directly related to an increase of the vertical fluxes of energy towards the wind turbines, and vertical shear stresses increase considerably. A further analysis, decomposing the total stresses into dispersive and Reynolds stresses, shows that the dispersive stresses increase drastically, and that the Reynolds stresses decrease on average, but increase in the wake region, leading to better wake recovery. We further observe also that turbulent dissipation levels in the boundary layer increase, and overall the outer layer of the boundary layer enters into a transient decelerating regime, while the inner layer and the turbine region attain a new statistically steady equilibrium within approximately one wind-farm through-flow time. Two additional optimal control cases study penalization of turbulent dissipation. For the current wind-farm geometry, it is found that the ratio between wind-farm energy extraction and turbulent boundary-layer dissipation remains roughly around 70 %, but can be slightly increased by a few per cent by penalizing the dissipation in the optimization objective. For a pressure-driven boundary layer in equilibrium, we estimate that such a shift can lead to an increase in wind-farm energy extraction of 6 %.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3