Chronological characteristics for snow accumulation on Styx Glacier in northern Victoria Land, Antarctica

Author:

Nyamgerel Yalalt,Han Yeongcheol,Kim Songyi,Hong Sang-Bum,Lee JeonghoonORCID,Hur Soon Do

Abstract

AbstractUnder the potential to reconstruct the past climatic and atmospheric conditions from a deep ice core in the coastal Antarctic site (Styx Glacier), an 8.84 m long firn core (73°50.975′ S, 163°41.640′ E; 1623 m a.s.l.) was initially studied to propose a reliable age scale for the local estimation of snow accumulation rate. The seasonal variations of δ18O, methanesulfonic acid (MSA) and non-sea-salt sulfate (nssSO42–) were used for the firn core dating and revealed 25 annual peaks (from 1990 to 2014) with volcanic sulfate signal. The observed declining trend in annual accumulation rate with a mean value of 146 ± 60 kg m–2 a–1 is likely to be linked to the changes of sea-ice extent in the Ross Sea region. Moreover, the temporal variation of the annual mean δ18O, an annual flux of MSA and nssSO42– also likely to be under the influence of ice-covered and open water area. This study suggests a potential to recover past changes in an oceanic environment and will be useful for the interpretation of the long ice core drilled at the same site.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference105 articles.

1. A climatology of stratospheric aerosol

2. Marshall, G and National Center for Atmospheric Research Staff (Eds) (2018) Last modified 19 Mar 2018. The Climate Data Guide: Marshall Southern Annular Mode (SAM) Index (Station-based). Available at https://climatedataguide.ucar.edu/climate-data/marshall-southern-annular-mode-sam-index-station-based.

3. Calibrating the ice core paleothermometer using seasonality

4. Twentieth century sea-ice trends in the Ross Sea from a high-resolution, coastal ice-core record

5. The Ross Sea Dipole – temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3