Genericity in topological dynamics

Author:

HOCHMAN MICHAEL

Abstract

AbstractWe study genericity of dynamical properties in the space of homeomorphisms of the Cantor set and in the space of subshifts of a suitably large shift space. These rather different settings are related by a Glasner–King type correspondence: genericity in one is equivalent to genericity in the other. By applying symbolic techniques in the shift-space model we derive new results about genericity of dynamical properties for transitive and totally transitive homeomorphisms of the Cantor set. We show that the isomorphism class of the universal odometer is generic in the space of transitive systems. On the other hand, the space of totally transitive systems displays much more varied dynamics. In particular, we show that in this space the isomorphism class of every Cantor system without periodic points is dense and the following properties are generic: minimality, zero entropy, disjointness from a fixed totally transitive system, weak mixing, strong mixing and minimal self joinings. The latter two stand in striking contrast to the situation in the measure-preserving category. We also prove a correspondence between genericity of dynamical properties in the measure-preserving category and genericity of systems supporting an invariant measure with the same property.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference25 articles.

1. Multiple recurrence and doubly minimal systems

2. An example of a measure preserving map with minimal self-joinings, and applications

3. A ‘general’ measure-preserving transformation is not mixing;Rohlin;Dokl. Akad. Nauk SSSR (N.S.),1948

4. Measure and Category

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the structure of generic subshifts;Nonlinearity;2023-08-08

2. Embedding theorems for discrete dynamical systems and topological flows;Studia Mathematica;2023

3. Maximal chain continuous factor;Discrete & Continuous Dynamical Systems;2021

4. Spectral continuity for aperiodic quantum systems: Applications of a folklore theorem;Journal of Mathematical Physics;2020-12-01

5. Linear dynamics induced by odometers;Proceedings of the American Mathematical Society;2020-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3