Comparative transcriptomics from intestinal cells of permissive and non-permissive hosts during Ancylostoma ceylanicum infection reveals unique signatures of protection and host specificity

Author:

Langeland AndreaORCID,Grill Emilia,Shetty Amol C.,O'Halloran Damien M.,Hawdon John M.

Abstract

AbstractSoil-transmitted nematodes (STNs) place a tremendous burden on health and economics worldwide with an estimate of at least 1.5 billion people, or 24% of the population, being infected with at least 1 STN globally. Children and pregnant women carry the heavier pathological burden, and disease caused by the blood-feeding worm in the intestine can result in anaemia and delays in physical and intellectual development. These parasites are capable of infecting and reproducing in various host species, but what determines host specificity remains unanswered. Identifying the molecular determinants of host specificity would provide a crucial breakthrough towards understanding the biology of parasitism and could provide attractive targets for intervention. To investigate specificity mechanisms, members of the hookworm genus Ancylostoma provide a powerful system as they range from strict specialists to generalists. Using transcriptomics, differentially expressed genes (DEGs) in permissive (hamster) and non-permissive (mouse) hosts at different early time points during infection with A. ceylanicum were examined. Analysis of the data has identified unique immune responses in mice, as well as potential permissive signals in hamsters. Specifically, immune pathways associated with resistance to infection are upregulated in the non-permissive host, providing a possible protection mechanism that is absent in the permissive host. Furthermore, unique signatures of host specificity that may inform the parasite that it has invaded a permissive host were identified. These data provide novel insight into the tissue-specific gene expression differences between permissive and non-permissive hosts in response to hookworm infection.

Funder

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3