Besnoitia besnoiti bradyzoite stages induce suicidal- and rapid vital-NETosis

Author:

Zhou ErshunORCID,Silva Liliana M. R.,Conejeros Iván,Velásquez Zahady D.,Hirz Manuela,Gärtner Ulrich,Jacquiet Philippe,Taubert Anja,Hermosilla Carlos

Abstract

AbstractBesnoitia besnoiti is an obligate intracellular apicomplexan protozoan parasite, which causes bovine besnoitiosis. Recently increased emergence within Europe was responsible for significant economic losses in the cattle industry due to the significant reduction of productivity. However, still limited knowledge exists on interactions between B. besnoiti and host innate immune system. Here, B. besnoiti bradyzoites were successfully isolated from tissue cysts located in skin biopsies of a naturally infected animal, and we aimed to investigate for the first time reactions of polymorphonuclear neutrophils (PMN) exposed to these vital bradyzoites. Freshly isolated bovine PMN were confronted to B. besnoiti bradyzoites. Scanning electron microscopy (s.e.m.)- and immunofluorescence microscopy-analyses demonstrated fine extracellular networks released by exposed bovine PMN resembling suicidal NETosis. Classical NETosis components were confirmed via co-localization of extracellular DNA decorated with histone 3 (H3) and neutrophil elastase (NE). Live cell imaging by 3D holotomographic microscopy (Nanolive®) unveiled rapid vital NETosis against this parasite. A significant increase of autophagosomes visualized by specific-LC3B antibodies and confocal microscopy was observed in B. besnoiti-stimulated bovine PMN when compared to non-stimulated group. As such, a significant positive correlation (r = 0.37; P = 0.042) was found between B. besnoiti-triggered suicidal NETosis and autophagy. These findings suggest that vital- as well as suicidal-NETosis might play a role in early innate host defence mechanisms against released B. besnoiti bradyzoites from tissue cysts, and possibly hampering further parasitic replication. Our data generate first hints on autophagy being associated with B. besnoiti bradyzoite-induced suicidal NETosis and highlighting for first time occurrence of parasite-mediated vital NETosis.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3