TempCourt: evaluation of temporal taggers on a new corpus of court decisions

Author:

Navas-Loro MaríaORCID,Filtz ErwinORCID,Rodríguez-Doncel VíctorORCID,Polleres AxelORCID,Kirrane SabrinaORCID

Abstract

Abstract The extraction and processing of temporal expressions (TEs) in textual documents have been extensively studied in several domains; however, for the legal domain it remains an open challenge. This is possibly due to the scarcity of corpora in the domain and the particularities found in legal documents that are highlighted in this paper. Considering the pivotal role played by temporal information when it comes to analyzing legal cases, this paper presents TempCourt, a corpus of 30 legal documents from the European Court of Human Rights, the European Court of Justice, and the United States Supreme Court with manually annotated TEs. The corpus contains two different temporal annotation sets that adhere to the TimeML standard, the first one capturing all TEs and the second dedicated to TEs that are relevant for the case under judgment (thus excluding dates of previous court decisions). The proposed gold standards are subsequently used to compare ten state-of-the-art cross-domain temporal taggers, and to identify not only the limitations of cross-domain temporal taggers but also limitations of the TimeML standard when applied to legal documents. Finally, the paper identifies the need for dedicated resources and the adaptation of existing tools, and specific annotation guidelines that can be adapted to different types of legal documents.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference50 articles.

1. Time expression analysis and recognition using syntactic token types and general heuristic rules;Zhong;Proceedings of the 55th Annual Meeting of the ACL,2017

2. Automating temporal annotation with TARSQI

3. Vlek, C. S. , Prakken, H. , Renooij, S. & Verheij, B. 2013. Representing and evaluating legal narratives with subscenarios in a Bayesian network. In OASIcs-OpenAccess Series in Informatics, 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

4. UzZaman, N. , Llorens, H. , Derczynski, L. , Allen, J. , Verhagen, M. & Pustejovsky, J. 2013. SemEval-2013 Task 1: TempEval-3: evaluating time expressions, events, and temporal relations. In Proceedings of the Workshop SemEval 2013, 1–9.

5. Llorens, H. , Saquete, E. & Navarro, B. 2010. TIPSem (english and spanish): evaluating CRFs and semantic roles inTempEval-2. In Proceedings of the Workshop SemEval, 284–291. ACL.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time expression recognition and normalization: a survey;Artificial Intelligence Review;2023-01-24

2. Lynx: A knowledge-based AI service platform for content processing, enrichment and analysis for the legal domain;Information Systems;2022-05

3. TimeLex: A Suite of Tools for Processing Temporal Information in Legal Texts;AI Approaches to the Complexity of Legal Systems XI-XII;2021

4. Events Matter: Extraction of Events from Court Decisions;Frontiers in Artificial Intelligence and Applications;2020-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3