Crowd-assessing quality in uncertain data linking datasets

Author:

Faria Daniel,Ferrara AlfioORCID,Jiménez-ruiz ErnestoORCID,Montanelli StefanoORCID,Pesquita Catia

Abstract

Abstract The quality of a dataset used for evaluating data linking methods, techniques, and tools depends on the availability of a set of mappings, called reference alignment, that is known to be correct. In particular, it is crucial that mappings effectively represent relations between pairs of entities that are indeed similar due to the fact that they denote the same object. Since the reliability of mappings is decisive in order to perform a fair evaluation of automatic linking methods and tools, we call this property of mappings as mapping fairness. In this article, we propose a crowd-based approach, called Crowd Quality (CQ), for assessing the quality of data linking datasets by measuring the fairness of the mappings in the reference alignment. Moreover, we present a real experiment, where we evaluate two state-of-the-art data linking tools before and after the refinement of the reference alignment based on the CQ approach, in order to present the benefits deriving from the crowd assessment of mapping fairness.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference37 articles.

1. Volz, J. , Bizer, C. , Gaedke, M. & Kobilarov, G. 2009. Silk-a link discovery framework for the web of data. In International Workshop on Linked Data on the Web (LDOW2009), Madrid, Spain. CEUR-WS.org.

2. Saveta, T. , Daskalaki, E. , Flouris, G. , Fundulaki, I. , Herschel, M. & Ngonga Ngomo, A.-C. 2015. Pushing the limits of instance matching systems: a semantics-aware benchmark for linked data. In Proceedings of the 24th International Conference on World Wide Web, ACM, 105–106.

3. Sarasua, C. , Simperl, E. & Noy, N. F. 2012. CrowdMap: crowdsourcing ontology alignment with microtasks. In Proceedings of the 11th International Semantic Web Conference, Boston, MA, USA, 525–541.

4. Röder, M. , Saveta, T. , Fundulaki, I. & Ngomo, A.-C. N. (2017). Hobbit link discovery benchmarks. 12th International Workshop on Ontology Matching (OM 2017), Vienna, Austria.

5. Paulheim, H. , Hertling, S. & Ritze, D. 2013. Towards evaluating interactive ontology matching tools. In Proceedings of the 10th Extended Semantic Web Conference, Montpellier, France, 31–45.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3