Investigating the crumpling effect in honeycomb sandwich panels under bending loads using FEA technique

Author:

Saqib N.ORCID,Jamil T.ORCID,Zai B.A.

Abstract

Abstract In this study a representative sandwich panel is investigated statically in two different configurations under similar bending loads. In one configuration serrations are introduced in the honeycomb core while the other one has un-modified core. Three-point bend test (TPBT) has been performed on both configurations through Finite Element Analysis (FEA) technique using ANSYS Workbench considering American Society for Testing and Materials (ASTM) standards. In both configurations the same aluminium honeycomb core is modelled having an adhesive layer in between adjacent foils to simulate actual scenario instead of relying on the block properties. Honeycomb core offers highest strength in its thickness (T) direction or the z-direction by virtue of its shape. Any distortion in the shape of the honeycomb adversely affects its strength. During bending the honeycomb core witnesses multidirectional forces consequently leading to distortion or crumpling. The serrations in the structure allow bending of the honeycomb core with minimal loss of strength by limiting the deformation to a specific region consequently preserving the shape as well as the strength of the honeycomb core. The results of both samples are compared with respect to deflection, strain and reaction force. It proves that serrated core is more favourable to be used in bent or curved sandwich panels.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3