Plume flow characteristics of rectangular exhaust nozzles in a micro-jet engine

Author:

Lee C.ORCID,Choi S.M.ORCID

Abstract

AbstractThe flow characteristics of the plume ejected from a micro-jet engine’s rectangular exhaust nozzle have been studied by conducting experimental and numerical analyses. The radiated infrared signature of a plume ejected from a rectangular exhaust nozzle with a large aspect ratio in a jet propulsion engine is known to be significantly lower than that of a plume ejected from a circular exhaust nozzle. The velocity and temperature distributions, which are the flow characteristics of the jet, were measured to investigate this phenomenon. For this purpose, we installed a circular nozzle and a rectangular exhaust nozzle with an aspect ratio of five to a micro-jet engine. The results showed that the plume spreads wider as it moves away from the nozzle exit and that the velocity rapidly decreases in the case of the rectangular nozzle, contrary to the case of the circular nozzle. Similar tendencies were observed for the temperature distribution and magnitude of the ejected plume. Thus, we concluded that the flow distribution caused by the nozzle shape induces a greater drop in the radiated infrared signature of the plume ejected from the rectangular nozzle than the circular nozzle. Flow analysis was conducted to evaluate the flow in and outside the exhaust nozzle; results similar to those of the experiment were obtained. These results show that the ejecting jet has a greater mixing effect on the air outside when using the rectangular nozzle than the circular nozzle.

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the Effects of Aft Deck Geometry on Plume Shield Ratio;International Journal of Aeronautical and Space Sciences;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3