A conceptual tool for environmentally benign design: development and evaluation of a “proof of concept”

Author:

Acharya ShakuntalaORCID,Chakrabarti Amaresh

Abstract

AbstractDesign is a decision-making process for which knowledge is a prerequisite. Most decisions are taken at the conceptual stage and have pronounced influence on the final design. The literature, therefore, recommends the incorporation of sustainability criteria, such as environment, at this stage. Difficulty in performing life cycle assessment (LCA) due to low availability of information at the conceptual stage for evaluation and highly abstract nature of solutions, inadequate incorporation of DfE (Design for Environment) guidelines and LCA reports into the design process, and a lack of effective communication of the same to the designers for prompt decision-making are major motivations for the development of a support. This paper discusses a “conceptual Tool for environmentally benign design” – concepTe – that supports designers in decision-making during the conceptual design stage, by offering environmental impact (EI) estimates of abstract solutions with associated uncertainty, for evaluation and selection of the most environmentally benign solution as concept. The EI estimates are calculated by a module in the tool based on a proposed EI estimation method, which requires the support of a knowledge base to fetch appropriate LCA information corresponding to the design element being conceptualized. This knowledge base is grounded in the domain-agnostic SAPPhIRE model ontology, allows semantic operability of the knowledge, and offers the results to the designers in a familiar domain language to aid decision-making. A “proof of concept” of the tool is developed for application in design of building in the AEC (Architectural design, Engineering, and Construction) domain. Further, empirical studies are conducted to evaluate the effectiveness of the “proof of concept” to support decision-making and results are found favorable. The paper also discusses the future scope for further development of the tool into a holistic design decision-making platform.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference98 articles.

1. Comparison of life cycle assessment databases for building assessment;Takano;OSB,2014

2. PE Int′l. GaBi. Available at www.gabi-software.com/support/gabi/gabi-lcia-documentation/traci-21.

3. Investigating novelty–outcome relationships in engineering design

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3