Research and Diagnostic Algorithmic Rules (RADAR) for mood disorders, recurrence of illness, suicidal behaviours, and the patient’s lifetime trajectory

Author:

Maes MichaelORCID,Moraes Juliana Brum,Congio Ana,Vargas Heber,Nunes Sandra

Abstract

AbstractThe top-down Diagnostic and Statistical Manual/International Statistical Classification of Diseases categories of mood disorders are inaccurate, and their dogmatic nature precludes both deductive (as indisputable) and inductive (as top-down) remodelling of case definitions. In trials, psychiatric rating scale scores employed as outcome variables are invalid and rely on folk psychology-like narratives. Using machine learning techniques, we developed a new precision nomothetic model of mood disorders with a recurrence of illness (ROI) index, a new endophenotype class, namely Major Dysmood Disorder (MDMD), characterised by increased ROI, a more severe phenome, and more disabilities. Nonetheless, our previous studies did not compute Research and Diagnostic Algorithmic Rules (RADAR) to diagnose MDMD and score ROI, lifetime (LT), and current suicidal behaviours, as well as the phenome of mood disorders. Here, we provide rules to compute bottom-up RADAR scores for MDMD, ROI, LT and current suicidal ideation and attempts, the phenome of mood disorders, and the lifetime trajectory of mood disorder patients from a family history of mood disorders and substance abuse to adverse childhood experiences, ROI, and the phenome. We also demonstrate how to plot the 12 major scores in a single RADAR graph, which displays all features in a two-dimensional plot. These graphs allow the characteristics of a patient to be displayed as an idiomatic fingerprint, allowing one to estimate the key traits and severity of the illness at a glance. Consequently, biomarker research into mood disorders should use our RADAR scores to examine pan-omics data, which should be used to enlarge our precision models and RADAR graph.

Publisher

Cambridge University Press (CUP)

Subject

Biological Psychiatry,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3