Author:
Block Henry W.,Griffith William S.,Savits Thomas H.
Abstract
Structure functions relate the level of operations of a system as a function of the level of the operation of its components. In this paper structure functions are studied which have an intuitive property, called L-superadditive (L-subadditive). Such functions describe whether a system is more series-like or more parallel-like. L-superadditive functions are also known under the names supermodular, quasi-monotone and superadditive and have been studied by many authors. Basic properties of both discrete and continuous (i.e., taking a continuum of values) L-superadditive structure functions are studied. For binary structure functions of binary values, El-Neweihi (1980) showed that L-superadditive structure functions must be series. This continues to hold for binary-valued structure functions even if the component values are continuous (see Proposition 3.1). In the case of non-binary-valued structure functions this is no longer the case. We consider structure functions taking discrete values and obtain results in various cases. A conjecture concerning the general case is made.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献