Abstract
We study a markovian evolutionary process which encompasses the classical simple genetic algorithm. This process is obtained by randomly perturbing a very simple selection scheme. Using the Freidlin-Wentzell theory, we carry out a precise study of the asymptotic dynamics of the process as the perturbations disappear. We show how a delicate interaction between the perturbations and the selection pressure may force the convergence toward the global maxima of the fitness function. We put forward the existence of a critical population size, above which this kind of convergence can be achieved. We compute upper bounds of this critical population size for several examples. We derive several conditions to ensure convergence in the homogeneous case and these provide the first mathematically well-founded convergence results for genetic algorithms.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献