CCAAT/enhancer-binding protein β: its role in breast cancer and associations with receptor tyrosine kinases

Author:

Zahnow Cynthia A.

Abstract

AbstractThe CCAAT/enhancer-binding proteins (C/EBPs) are a family of leucine-zipper transcription factors that regulate gene expression to control cellular proliferation, differentiation, inflammation and metabolism. Encoded by an intronless gene, C/EBPβ is expressed as several distinct protein isoforms (LAP1, LAP2, LIP) whose expression is regulated by the differential use of several in-frame translation start sites. LAP1 and LAP2 are transcriptional activators and are associated with differentiation, whereas LIP is frequently elevated in proliferative tissue and acts as a dominant-negative inhibitor of transcription. However, emerging evidence suggests that LIP can serve as a transcriptional activator in some cellular contexts, and that LAP1 and LAP2 might also have unique actions. The LIP:LAP ratio is crucial for the maintenance of normal growth and development, and increases in this ratio lead to aggressive forms of breast cancer. This review discusses the regulation of C/EBPβ activity by post-translational modification, the individual actions of LAP1, LAP2 and LIP, and the functions and downstream targets that are unique to each isoform. The role of the C/EBPβ isoforms in breast cancer is discussed and emphasis is placed on their interactions with receptor tyrosine kinases.

Publisher

Cambridge University Press (CUP)

Subject

Molecular Biology,Molecular Medicine

Reference205 articles.

1. Enhanced insulin signaling via Shc in human breast cancer

2. http://2zip.molgen.mpg.de/

3. http://www.transcriptionfactor.org To predict leucine zippers in your amino acid sequence use:

4. www.cancer.gov/cancertopics/types/breast The DBD is a database of predicted transcription factors in completely sequenced genomes.

5. Protein–protein interactions as targets for small-molecule therapeutics in cancer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3