Metabolic rate thermal plasticity in the marine annelid Ophryotrocha labronica across two successive generations

Author:

Massamba–N'Siala GloriaORCID,Carignan Marie Hélène,Calosi Piero,Noisette Fanny

Abstract

AbstractMarine ectotherms have evolved a range of physiological strategies to cope with temperature changes that persist across generations. For example, metabolic rates are expected to increase following an acute exposure to temperature, with potential detrimental impacts for fitness. However, they may be downregulated in the following generation if offspring experience the thermal conditions of their parents, with a resulting decrease in maintenance costs and fitness maximization. Yet, trans-generational studies on metabolic rates are few in marine ectotherms, thus limiting our ability to accurately predict longer-term implications of ocean warming on organisms' performance, metabolic rates being the fundamental pacemaker for all biological processes. This is particularly true for small-size organisms, for which the determination of individual metabolic rates has been historically challenging, and for many groups of marine invertebrates, such as annelids, which are under-represented in physiological investigations. Here, we exposed the subtidal annelid Ophryotrocha labronica (body length: ~4 mm) to a thermal gradient (21, 24, 26, 29°C) and measured, for the first time in this species, the temperature dependence of metabolic rates across two generations. We found that metabolic rates were positively related to temperature, but this relationship did not differ between generations. Our study provides additional evidence for the diversity of temperature-associated physiological responses of marine ectotherms and offers a number of methodological recommendations for unveiling the mechanisms underpinning the observed trans-generational responses of metabolic rates in marine annelid species.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3