Author:
Zhao Dan,Kong Ling-Feng,Sasaki Takenori,Li Qi
Abstract
AbstractMolluscan shells showing phenotypic variations are ideal models for studying evolution and plasticity. In north-eastern Asia, genetic and morphological diversity of the gastropod, Monodonta labio, were assumed to be influenced by both palaeoclimatic changes and current ecological factors. In this study, we examined spatial variations in shell shape of M. labio using general measurement and geometric morphometric analysis. We also investigated whether shell shape variation is best explained by environmental gradients or by genetic structuring, based on our prior molecular phylogeographic study. Two common morphological forms were observed among Chinese populations and in the adjacent Asian areas. Both the analyses revealed separation patterns in morphological variations of shell shape among the clades and populations. Environmental modelling analysis showed a significant correlation between shape variations and local maximum temperatures of the warmest month, indicating the role of natural selection in the evolution of this species. Data obtained in this study, combined with the cytochrome oxidase subunit I (COI) molecular phylogenetic data from the prior study, showed that morphological variations in M. labio were constrained by both local adaptation and phenotypic plasticity. We hypothesized that geographic separation by the Dongshan Landbridge was the first step towards its diversification, and that the temperature gradient between the East China Sea and South China Sea probably was the selective force driving the divergence of its morphological variations.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献