Do eco-geospatial differences induce otolith morphological variations? Assessment in Chelon auratus (Mugiliformes, Mugilidae) populations collected from Tunisian and Mauritanian waters

Author:

Deida Toumene,Gammoudi MehrezORCID,El Ayari TahaniORCID,Ben Faleh AbderraoufORCID,Djimera Lassana,Shahin Adel A. BasyounyORCID,Bouriga NawzetORCID

Abstract

Abstract Saccular otoliths (sagittae) have long been shown to be species-specific and exhibit inland geospatial intra- and interpopulation morphological differences with variations in environmental conditions. Here, we analysed inland and outland geospatial variations in sagittae shape, length (Lo), width (Wo), perimeter (Po), and area (Ao), and fluctuating asymmetry (FA) in Chelon auratus males and females collected from Ghar El Melh (Tunisia) and Etoile Bay (Mauritania) stations to assess whether sagittae shape and morphometry differ between these two niches having different environmental conditions. At the intrapopulation level, a significant otolith shape asymmetry was observed between left and right and left–left and right–right otoliths among males and females of the Ghar El Melh (Tunisia) population and a significant symmetry among those of the Etoile Bay (Mauritania) population. At the interpopulation level, a significant asymmetry was found between left and right otoliths' shape among males and females of the two populations. Besides, a discriminant function analysis of otoliths' contour shape separated left and right otoliths among males and females at the intra- and interpopulation levels and also separated those of the two populations. Moreover, differential significant asymmetry in Lo, Wo, Po, and Ao between left and right otoliths was observed among males and females at the intra- and interpopulation levels. Therefore, the geospatial variations in environmental conditions between the two ecological niches effectively induced differences in otolith morphology. These significant asymmetries were discussed in terms of FA caused by environmental stress conditions resulting from variations in abiotic factors between the two ecological niches.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3