Turbine thermomechanical modelling during excessive axial movement and overspeed

Author:

Eryilmaz I.ORCID,Pachidis V.

Abstract

ABSTRACTThis manuscript discusses the numerical (finite element) and analytical modelling of structural interactions between gas turbine components in case of excessive axial movement and overspeed. Excessive axial movement, which may occur after a shaft failure, results in contact between rotating and static turbine components under high forces. These forces create friction which can act as a counter torque, potentially retarding the ‘free-rotating’ components. The study is based on a shaft failure scenario of a ‘three-shaft’, high ‘bypass’ ratio, civil ‘large-fan’ engine. Coupled analytical performance and friction methods are used as stand-alone tools to investigate the effect of rubbing between rotating and stationary components. The method is supported by ‘high-fidelity’, ‘three-dimensional’, thermomechanical finite element simulations using LS-DYNA software. The novelty of the work reported herein lies in the development of a generalised modelling approach that can produce useful engine design guidelines to minimise the terminal speed of a free running turbine after an unlocated shaft failure. The study demonstrates the advantage of using a fast analytical formulation in a design space exploration, after verifying the analytical model against finite element simulation results. The radius and the area of a stationary seal platform in the turbine assembly are changed systematically and the design space is explored in terms of turbine acceleration, turbine dislocation rate and stationary component mass. The radius of the friction interface increases due to the increasing radius of the nozzle guide vane flow path and stationary seal platform. This increases the frictional torque generated at the interface. It was found that if the axial dislocation rate of the free running turbine wheel is high, the resulting friction torque becomes more effective as an overspeed prevention mechanism. Reduced contact area results in a higher axial dislocation rate and this condition leads to a design compromise between available friction capacity, during shaft failure contact and seal platform structural integrity.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference22 articles.

1. Soupizon J. Device for limiting turbine overspeed in a turbomachine, 2006, US Patent 20060251506 A1.

2. Carslaw H. and Jaeger J. Conduction of heat in solids, 2nd ed, Great Britain: Oxford University Press, 1959.

3. Gonzalez A. Gas Turbine Shaft Over-speed/Failure Modelling. Friction and Wear Modelling of Turbines in Contact, PhD Thesis, Cranfield University, Bedford, UK, 2014.

4. Multistage compressor and turbine modeling for the prediction of the maximum turbine speed resulting from shaft breakage;Haake;ASME J Turbomach,2010

5. Numerical Simulation of Tangling in Jet Engine Turbines

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3