Energy metabolism and performance of Mytilus galloprovincialis under anaerobiosis

Author:

Babarro Jose M.F.,Labarta Uxío,Reiriz María José Fernández

Abstract

Intertidal individuals of Mytilus galloprovincialis were exposed to anaerobiosis in laboratory at 22°C and a set of biochemical metabolites and survival potential determined. Differences in survival potential between individuals emersed or kept in oxygen-free seawater were residual according to ST50 values (survival time, P[asymp ]0.05) but emersed individuals survived significantly longer when considering ST90–100 values (P<0.05). Anaerobiosis was similarly activated under both emersion and incubation in anoxic seawater after 6 h according to a seven-fold increase in succinate. Longer exposure of individuals (up to 48 h) caused succinate (and propionate) to increase but in a higher magnitude under incubation with anoxic seawater. Propionate appeared in soft tissues after 24 h of incubation in anoxic seawater and after 48 h when individuals were emersed. Glycogen was not utilized after 6 h in any case, but was progressively used with longer exposure times and in a higher magnitude under incubation in anoxic seawater (48 h). Adenylate energy charge (AEC) was highly affected by both exposure time (P<0.001) and anaerobic treatment (P<0.01). Rapid breakdown of ATP and phospho-L-arginine (PLA) did occur during the first 24 h of anaerobiosis, the latter ATP drop was accompanied by slight increase of ADP but strong increase of AMP that accumulated in a higher magnitude under incubation in anoxic seawater. Biochemical results of the present study suggested a certain degree of aerobiosis for emersed M. galloprovincialis that in turn is linked to a slight but significant longer survival performance. Most significant biochemical changes occurred during the first 24 h of oxygen deprivation, but significant differences between treatments were observed after 24–48 h. These lag differences in biochemical metabolites together with more accurate survival analyses have to be considered when investigating the energy metabolism linked to the anaerobic performance of M. galloprovincialis.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3