Author:
Davenport John,Fletcher John S.
Abstract
The shell closure mechanism of Mytilus edulis protects the frontal ciliary mechanism against irreversible damage by low environmental salinity levels. Previous experiments had shown that the mantle fluid of mussels exposed to fluctuating salinity regimes was held at a concentration corresponding to about 60% s.w. (20·1‰S) during the period of shell valve closure (Shumway, 1977), while the oxygen tension of the mantle cavity fell rapidly after shell valve closure to 15 mmHg and thereafter remained relatively constant until the valves reopened (Bettison & Davenport, in preparation). These conditions of salinity and oxygen tension were applied to experimental preparations and their ciliary activity assessed. The salinity conditions alone depressed activity by 39·5%. The conditions of oxygen tension alone also produced a depression of 39·5% but there were signs of recovery during the period of simulated shell valve closure. When both salinity and oxygen tension conditions were applied simultaneously a more profound depression of 64·4% was produced by the interacting factors. Exposure of preparations to salinity levels corresponding to the external environment (‘no closure’ simulation) irretrievably damaged the frontal ciliary mechanism on the first exposure to low salinity.
Publisher
Cambridge University Press (CUP)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献