Passive microwave-derived spatial and temporal variations of summer melt on the Greenland ice sheet

Author:

Mote Thomas L.,Anderson Mark R.,Kuivinen Karl C.,Rowe Clinton M.

Abstract

Passive microwave-brightness temperatures over the Greenland ice sheet are examined during the melt season in order to develop a technique for determining surface-melt occurrences. Time series of Special Sensor Microwave/ Imager (SSM/I) data are examined for three locations on the ice sheet, two of which are known to experience melt. These two sites demonstrate a rapid increase in brightness temperatures in late spring to early summer, a prolonged period of elevated brightness temperatures during the summer, and a rapid decrease in brightness temperatures during late summer. This increase in brightness temperatures is associated with surface snow melting. An objective technique is developed to extract melt occurrences from the brightness-temperature time series. Of the two sites with summer melt, the site at the lower elevation had a longer period between the initial and final melt days and had more total days classified as melt during 1988 and 1989. The technique is then applied to the entire Greenland ice sheet for the first major surface-melt event of 1989. The melt-zone signal is mapped from late May to early June to demonstrate the advance and subsequent retreat of one “melt wave”. The use of such a technique to determine melt duration and extent for multiple years may provide an indication of climate change.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Snowmelt detection on the Antarctic ice sheet surface based on XPGR with improved ant colony algorithm;International Journal of Remote Sensing;2023-01-02

2. Remote Sensing of Surface Melt on Antarctica: Opportunities and Challenges;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

3. A Novel Approach to Map the Intensity of Surface Melting on the Antarctica Ice Sheet Using SMAP L-Band Microwave Radiometry;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2022

4. Intercalibration of Brightness Temperatures From FY-3 MWRI for Surface Snowmelt Detection Over Polar Ice Sheets;IEEE Transactions on Geoscience and Remote Sensing;2022

5. Mapping Firn Saturation Over Greenland Using NASA’s Soil Moisture Active Passive Satellite;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3