On planar Cremona maps of prime order

Author:

de Fernex Tommaso

Abstract

AbstractThis paper contains a new proof of the classification of prime order elements of Bir(ℙ2) up to conjugation. The first results on this topic can be traced back to classic works by Bertini and Kantor, among others. The innovation introduced by this paper consists of explicit geometric constructions of these Cremona transformations and the parameterization of their conjugacy classes. The methods employed here are inspired to [4], and rely on the reduction of the problem to classifying prime order automorphisms of rational surfaces. This classification is completed by combining equivariant Mori theory to the analysis of the action on anticanonical rings, which leads to characterize the cases that occur by explicit equations (see [28] for a different approach). Analogous constructions in higher dimensions are also discussed.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference29 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Borel subgroups of the plane Cremona group;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-11-11

2. Quotients of del Pezzo surfaces;International Journal of Mathematics;2019-11

3. Subgroups of odd order in the real plane Cremona group;Journal of Algebra;2016-09

4. Polynomial cubic differentials and convex polygons in the projective plane;Geometric and Functional Analysis;2015-11-25

5. A connection between birational automorphisms of the plane and linear systems of curves;Journal of Computational and Applied Mathematics;2015-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3