Preparation of BiCaSrCuO specimens for High-Resolution Transmission Electron Microscopy

Author:

Fortunati K.,Fendorf M.,Powers M.,Burmester C.P.,Gronsky R.

Abstract

Transmission electron microscopy, in particular high-resolution TEM, is proving to be a valuable tool in the continuing effort to characterize and understand the “high-Tc” superconducting oxides. Since specimen quality is of critical importance in high-resolution studies, care must be taken to choose the most appropriate specimen preparation technique for the material under study. The BiCaSrCuO material investigated here was in the form of small, sintered pellets with a porous microstructure which consists of small, randomly oriented, poorly connected, plate-like grains (see Figure 1). We have found that this morphology can significantly effect the production of suitable TEM specimens.The simplest and most rapid specimen preparation method employed consists of crushing a small amount of the starting material to a fine powder in an agate mortar and suspending the powder in pure ethanol or propanol. An eye dropper or syringe is then used to transfer 4-6 drops of the suspension onto a holey carbon film supported on a mesh grid, thus effectively dispersing the powder across the grid. A strong tendency for the crystal to cleave along (001) planes, due to the weak bonding between BiO layers, results in flake-like particles which exhibit a preferred [001] orientation on the grid. A high-resolution image of a specimen prepared using this method is shown in Figure 2. We have observed that some specimens produced in this manner are unstable under a 200kV beam (with LaB6 filament), with heavy damage occurring within the time that a through-focus series of micrographs can be exposed. It is also important to note that since separation along grain boundaries occurs during crushing, this method is not an appropriate choice for imaging grain boundary structures.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference6 articles.

1. 6 We gratefully acknowledge Dr. C.W. Chu and the Texas Center for Superconductivity at the University of Houston (TCSUH) for their support, and for supplying the samples used in this investigation. We also wish to express our thanks to Dr. J. Ulan and Mr. R. Wilson for their kind assistance. This work is supported by a University of Houston subcontract under DARPA Grant No. MDA972-88-J-1002, and by U.S. Department of Energy Contract No. DE-AC03-76SFO0098.

2. Preparation of Zeolites for TEM Using Microtomy

3. Microstructure of Pb‐modified Bi‐Ca‐Sr‐Cu‐O superconductor

4. Structure Analysis of High-TcSuperconductor Bi-Ca-Sr-Cu-O by Processing of High-Resolution Electron Microscope Images

5. Sample preparation of YBa2Cu3O7?? for high-resolution electron microscopy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3