Direct numerical simulation of turbulent flow in pipes with realistic large roughness at the wall

Author:

De Maio MariangelaORCID,Latini BeatriceORCID,Nasuti FrancescoORCID,Pirozzoli SergioORCID

Abstract

We carry out direct numerical simulation (DNS) of turbulent flow in rough pipes. Two types of irregular roughness are investigated, namely a grit-blasted and a graphite surface. A wide range of Reynolds numbers is tested, from the laminar up to the fully rough regime, attempting to replicate Nikuradse's pioneering study. Despite the large relative roughness, outer-layer similarity is achieved at high Reynolds number as hypothesised by Townsend, with deviations from the smooth wall case of 4 % for the grit-blasted surface and 13 % for the graphite surface. This makes it possible to define a roughness function and the equivalent sand-grain roughness. The results are compared with those obtained in plane channels, with small differences pointing to the residual influence of the duct cross-sectional shape in the presence of relatively large roughness. The computed friction factors behave similar to those Nikuradse's chart, with differences in terms of the friction factor in the laminar region and of the critical Reynolds number, which are partly absorbed by using the hydraulic radius as reference length scale. The distributions of the velocity fluctuations intensities point to a isotropisation of turbulence in the near-wall region resulting from the roughness, with influence of the roughness geometry. Comparison of the computed equivalent sand-grain roughness height suggest that existing correlations suffer from poor predictive power, at least for surfaces with large relative roughness.

Funder

Regione Lazio

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3