The Lyman–Huggins interpretation of enstrophy transport

Author:

Terrington S.J.ORCID,Hourigan K.ORCID,Thompson M.C.ORCID

Abstract

The Lighthill–Panton and Lyman–Huggins interpretations of vorticity dynamics are extended to the dynamics of enstrophy. There exist two competing definitions of the vorticity current tensor, which describes the flow rate of vorticity in the fluid interior, and the corresponding boundary vorticity flux, which represents the local vorticity creation rate on a boundary. It is demonstrated that each definition of the vorticity current tensor leads to a consistent set of definitions for the enstrophy current, boundary enstrophy flux and the enstrophy dissipation term. This leads to two alternative interpretations of vorticity and enstrophy dynamics: the Lighthill–Panton and Lyman–Huggins interpretations. Although the kinematic evolution of the vorticity and enstrophy fields are the same under each set of definitions, the dynamical interpretation of the motion generally differs. For example, we consider the Stokes flow over a rotating sphere, and find that the flow approaches a steady state where, under the Lyman–Huggins interpretation, there is no enstrophy creation or dissipation. Under the Lighthill–Panton interpretation, however, the steady-state flow features a balance between the continuous generation and subsequent dissipation of enstrophy. Moreover, the Lyman–Huggins interpretation has previously been shown to offer several benefits in understanding the dynamics of vorticity, and therefore it is beneficial to extend this interpretation to the dynamics of enstrophy. For example, the Lyman–Huggins interpretation allows the creation of vorticity, and therefore enstrophy, to be interpreted as an inviscid process, due to the relative acceleration between the fluid and the boundary.

Funder

Australian Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3