Rounded-corners-induced re-entrant non-occlusion in a horizontal tube

Author:

Tan DongwenORCID,Zhou XinpingORCID

Abstract

Keeping a tube from being plugged by a fluid is an important process in applications. An interesting re-entrant phenomenon for the capillary state with the occluding state sandwiching the non-occluding state from both the high- and low-Bond-number regions can appear by inserting a rod into a horizontal tube at an eccentric position (Tan et al., J. Fluid Mech, vol. 946, 2022, A7). Containers with rounded corners are very common. We theoretically investigate a situation for a horizontal open tube with rounded corner(s). The results show that a re-entrant non-occlusion at a contact angle can also appear without the insertion of any object. The competition between the rounded corner wetting/non-wetting effect and gravity effect can lead to a re-entrant non-occlusion. The re-entrant non-occlusion is affected by the shape and orientation of the rounded corner(s). For a tube with only one rounded corner, the re-entrant non-occlusion exists when the rounded corner has a not-so-large corner radius and is not in a landscape orientation. For a tube with two (or more) rounded corners, the corner(s) with the strongest corner effect will determine the existence or non-existence of the re-entrant non-occlusion. This paper provides an effective scheme for designing a high-performance capillary with corners that are not easily occluded by a fluid and removing fluid blockage from a capillary in optofluidic/microfluidic applications.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference22 articles.

1. Equilibrium configurations of drops or bubbles in an eccentric annulus;Pour;J. Fluid Mech.,2019

2. Existence of static capillary plugs in horizontal rectangular cylinders;Manning;Microfluid Nanofluid,2015

3. Geometry-induced capillary emptying;Rascón;Proc. Natl Acad. Sci. USA,2016

4. Continuous and Discontinuous Disappearance of Capillary Surfaces

5. Dichotomous behavior of capillary surfaces in zero gravity;Concus;Microgravity Sci. Technol.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3