Viscous effects in Mach reflection of shock waves and passage to the inviscid limit

Author:

Shoev G.V.ORCID,Kudryavtsev A.N.ORCID,Khotyanovsky D.V.ORCID,Bondar Ye.A.ORCID

Abstract

The influence of viscosity on the Mach reflection of shock waves in a steady flow of a monatomic gas is studied by solving the Navier–Stokes equations numerically. Based on the nested block grid refinement technique, the flow near the shock wave intersection is simulated, and its behaviour with increasing Reynolds number is studied. The computations are performed for the interaction of both strong (free-stream Mach number$M_\infty = 4$) and weak ($M_\infty = 1.7$) shock waves. In the strong reflection of shock waves at all Reynolds numbers in the examined range, it is found that there exists a small-size zone behind the shock wave intersection where the flow parameters differ from those predicted by the Rankine–Hugoniot relations and hence deviate from the predictions of the inviscid three-shock theory. The structure of this zone is self-similar: in coordinates normalised to the mean free path of molecules in the free stream. The structure is identical at all Reynolds numbers considered in the study. As the Reynolds number increases, the size of this zone in physical coordinates decreases, but the maximum difference between the viscous and inviscid solutions in this zone remains constant, reaching approximately$10\,\%$for pressure. In the weak reflection of shock waves, the flow structure behind the shock wave intersection is not self-similar, i.e. the flow fields at different Reynolds numbers do not coincide in the normalised coordinates, but converge, as the Reynolds number increases, to the parameters predicted by the inviscid three-shock theory.

Funder

Russian Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3