Saturation of flames to multiple inputs at one frequency

Author:

Nygård Håkon T.ORCID,Ghirardo GiulioORCID,Worth Nicholas A.ORCID

Abstract

Existing experimental results show that swirling flames in annular combustors respond with a different gain to acoustic azimuthal modes rotating in either the clockwise or anti-clockwise direction. The ratio $R$ of these two gains is introduced, with $R=1$ being the conventional case of flames responding the same to the two forcing directions. To allow a difference in response to the different directions ( $R\neq 1$ ), a multiple-input single-output azimuthal flame describing function is successfully implemented in a quaternion valued low-order model of an annular combustion chamber in the current work. Theoretical studies have explored this kind of symmetry breaking between the two acoustic wave directions in the past, but it has not been backed by experimental data. One of the main features of the new model proposed in this work is the potential difference in mode shapes between the acoustic and the heat release rate modes, which has recently been observed experimentally. This results in a gain-dependent equation for the nature of the mode, which has a significant influence on the fixed points of the system. For example, one of the spinning solutions and the standing solution can disappear through a saddle node bifurcation as the parameters are varied. The presence of only a single direction for the spinning solution matches experimental observations better than the conventional models, and the proposed model is shown to qualitatively describe experimental measurements well.

Funder

Norges Forskningsråd

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3