Flattening of a hollow droplet impacting a solid surface

Author:

Nasiri MahdiORCID,Amini Ghobad,Moreau Christian,Dolatabadi Ali

Abstract

The interaction of a hollow droplet impacting a solid surface occurs in several applications, including controllable biomedicine and thermal spray coating. Understanding the physics of the hollow droplet spreading is the key to maintaining the mass transfer process in all relevant applications. In this work, a comprehensive experimental, numerical and theoretical study is performed on water hollow droplets impacting a rigid surface to better understand the flattening process of a hollow droplet. In the numerical part, compressible Navier–Stokes equations are solved using the volume of fluid (VOF) method in a two-dimensional (2-D)-axisymmetric model. The comparison of simulation results with the experimental photographs shows that the numerical solution can correctly predict the hollow droplet shape evolution. The results show that the spreading diameter and height of the counter-jet formed after the hollow droplet impact grow with impact velocity. Investigating the size and location of the entrapped bubble shows an optimum bubble size that facilitates the hollow droplet flattening. It is also shown that the ripples on splats produced by the hollow droplets with a larger bubble size are higher than those of small bubbles. In the end, a theoretical model is developed to analyse the maximum spreading diameter of the hollow droplet impact analytically. Its prediction is in good agreement with the experimental and numerical results.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3