Abstract
We investigate the nonlinear evolution of pairs of three-dimensional, equal-sized and opposite-signed vortices at finite Froude and Rossby numbers. The two vortices may be offset in the vertical direction. The initial conditions stem from relative equilibria obtained numerically in the quasi-geostrophic regime, for vanishing Froude and Rossby numbers. We first address the linear stability of the quasi-geostrophic opposite-signed pairs of vortices, and show that for all vertical offsets, the vortices are sensitive to an instability when close enough together. In the nonlinear regime, the instability may lead to the partial destruction of the vortices. We then address the nonlinear interaction of the vortices for various values of the Rossby number. We show that as the Rossby number increases, destructive interactions, where the vortices break into pieces, may occur for a larger separation between the vortices, compared to the quasi-geostrophic case. We also show that for well-separated vortices, the interaction is non-destructive, and ageostrophic effects lead to the deviation of the trajectory of the pair of vortices, as the anticyclonic vortex dominates the interaction. Finally, we show that the flow remains remarkably close to a balanced state, emitting only waves containing negligible energy, even when the interaction leads to the destruction of the vortices.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献