Thermotactic navigation of an artificial microswimmer near a plane wall

Author:

Poddar AntaripORCID

Abstract

Despite significant advances in the field of man-made micro- and nanomotors, it remains a challenge to precisely control their motion in bounded environments. Here, we present a theoretical analysis of a thermally activated micromotor near a plane wall under the action of a background linear temperature field. The coupling between the autonomous and field-directed motions has been resolved using a combined analytical–numerical framework comprising general solutions in bispherical coordinates and the reciprocal theorem for creeping flows. Results reveal giant augmentation in swimming speeds, the controlling parameter zones for positive and negative thermotaxes and the flexibility of steering perpendicular to the field gradient for an isolated micromotor. Boundary-instigated thermo-fluidic modulations at different levels of confinements and preferential orientations cause directional switching of both the vertical translation and rotation parallel to the wall, thereby drastically altering the phase portraits of the swimmer dynamics. Contrasting trajectory characteristics, e.g. escape, attraction, are partitioned by unstable separatrices in the phase portraits, while competitive repulsion (attraction) after attraction (repulsion) characteristics emerge for different relative field strengths$\mathcal {S}$and gradient orientations$\theta _T$. Below$\mathcal {S}=0.25$, highly counter-intuitive trajectories result when the micromotor is initially launched from an overlapping escape zone. Moreover, external-field-assisted microswimming can uniquely tune the directionality of wall-parallel translation, broadening the scope of dynamic regulation of self-propulsion. Thus, providing insights into a precisely controlled fuel-free actuation of micromotors near a physical obstacle, the present study stands as a step toward addressing the increasing demand for successful implementation of micromotors in futuristic clinical and environmental applications.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3