(EXTRA)ORDINARY EQUIVALENCES WITH THE ASCENDING/DESCENDING SEQUENCE PRINCIPLE

Author:

FIORI-CARONES MARTAORCID,MARCONE ALBERTOORCID,SHAFER PAULORCID,SOLDÀ GIOVANNIORCID

Abstract

Abstract We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ over $\mathsf {RCA}_0$ . For each fixed $k \geq 3$ , the Rival–Sands theorem for infinite partial orders of width $\leq \!k$ is equivalent to $\mathsf {ADS}$ over $\mathsf {RCA}_0$ . The Rival–Sands theorem for infinite partial orders that are decomposable into the union of two chains is equivalent to $\mathsf {SADS}$ over $\mathsf {RCA}_0$ . Here $\mathsf {RCA}_0$ denotes the recursive comprehension axiomatic system, $\mathsf {I}\Sigma ^0_{2}$ denotes the $\Sigma ^0_2$ induction scheme, $\mathsf {ADS}$ denotes the ascending/descending sequence principle, and $\mathsf {SADS}$ denotes the stable ascending/descending sequence principle. To the best of our knowledge, these versions of the Rival–Sands theorem for partial orders are the first examples of theorems from the general mathematics literature whose strength is exactly characterized by $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ , by $\mathsf {ADS}$ , and by $\mathsf {SADS}$ . Furthermore, we give a new purely combinatorial result by extending the Rival–Sands theorem to infinite partial orders that do not have infinite antichains, and we show that this extension is equivalent to arithmetical comprehension over $\mathsf {RCA}_0$ .

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference31 articles.

1. Reverse mathematics, well-quasi-orders, and Noetherian spaces;Frittaion;Archive for Mathematical Logic,2016

2. Reverse mathematics and initial intervals;Frittaion;Annals of Pure and Applied Logic,2014

3. An effective version of Dilworth’s theorem;Kierstead;Transactions of the American Mathematical Society,1981

4. Subsystems of Second Order Arithmetic

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3